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Abschatzung der Fehler 
Die Fehler der Strukturamplituden (Tabelle 4) 

liegen bei den starken Reflexen unter 1% und bei den 
schwachen Reflexen zwischen 2 und 5 %. Auf Grund 
der Fehlerfortpflanzung ergibt sich ein Fehler der 
Elektronendichte von etwa 0,05 e A -3 in allgemeinen 
und 0,1 e /~ - a  in speziellen Lagen. 

Wir danken der Deutschen Forschungsgemeinschaft 
ffir die Bereitstellung des Diffraktometers und ffir 
personelle Unterstiitzung. Dem Verband der chemi- 
schen Industrie danken wir ffir die UnterstiJtzung mit 
Sachmitteln. Der Gesellchaft ffir Kernforschung, Karls- 
ruhe, danken wir ffir Bereitstellung von Messzeit an 
einem Neutronenkanal des Reactors. 
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A relationship between average small-amplitude molecular motion in a crystal and the mean-squared 
half width of an n.m.r, absorption line, i.e. the second moment, is rederived, extended and discussed. 
The average motion is represented by rigid-body tensors T, L and S of the atom groups considered and 
anisotropic vibration tensors of the atoms composing these groups. Thus, the geometrical part of the 
second moment is expressed in terms of conventional positional and thermal parameters. Three kinds 
of dipolar interactions, between nuclear spins, are considered: (a) nuclei belonging to the same group, 
(b) nuclei belonging to different non-bonded groups and (c) interactions between rigid segments of a 
non-rigid molecule. Equations applicable to the second moment of both single crystals and powder 
specimens are presented, and the simplified versions resulting from the assumption of isotropic motion 
are also derived. A discussion of possible limitations of the method and some programming consider- 
ations concerning its application are given. 

Introduction 

Average atomic and molecular motions in a crystal 
affect a number of physical properties but such effects 
appear to have been treated satisfactorily only in 
connexion with techniques in which the concept of 
mean-squared displacement is associated with a 
measurable quantity, such as diffraction by crystals or 
the M6ssbauer effect. However, any property de- 
pending on interatomic distances should, at least in 
principle, depend on their variation with time and 
therefore a unified approach to the effect of motion on 
the measurable quantity seems to be of interest. The 
thermal parameters used by crystallographers are of 
considerable importance in this context, for two 
reasons. Firstly, the average-motion formalism in 
crystallography has been extensively developed and is, 
within the underlying restrictions, quite general, and 
secondly, the wealth of detail on average motion, 
accumulated so far by crystallographers, could well be 

applied to other properties with advantage. Such 
considerations motivated our study of the effect of 
lattice vibrations on the nuclear magnetic resonance of 
crystals (Shmueli, Polak & Sheinblatt, 1973; Polak, 
Sheinblatt & Shmueli, 1974). In the present article, we 
wish to outline our approach to the problem and to 
extend the results derived previously. 

Among the physical properties of crystals which can 
be predicted from the knowledge of a crystal structure, 
the nuclear magnetic resonance (n.m.r.) parameters 
are of the most extensively investigated. In particular, 
the mean-squared half width of an absorption line, 
known as the 'second moment' ,  has been given much 
attention. A useful expression for the second moment 
of an n.m.r absorption line, broadened by the dipolar 
interactions between nuclear spins, was derived by van 
Vleck (1948), 

l ,2h2N 1 3oos20  r,  )2 
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where I is the quantum number of the nuclear spin, ~, 
is the gyromagnetic ratio [equation (1) is valid only for 
the case of nuclei having the same ~,], h is Planck's 
constant, and N is the number of nuclei involved in the 
summation; r~j is the separation of nuclei i and j, and 
0~j is the angle between the internuclear vector rij and 
the external magnetic field. 

Thus, van Vleck's expression gives a simple rela- 
tionship between the macroscopic measured second 
moment and the geometrical arrangement of atomic 
nuclei. The theoretical basis of (1), as well as its 
applications and experimental aspects of second- 
moment measurements, have been reviewed in detail 
(Andrew, 1958; Slichter, 1963 ; Kitaigorodskii, 1973). 

The double summation in (1) can be regarded as the 
'structure factor' of the second moment (AH z) and 
can be computed in a straightforward manner once the 
atomic positional parameters are known. Such a cal- 
culation, however, refers to a structure at rest. It has 
been shown both theoretically and experimentally, 
that motions occurring in the solid affect the measur- 
able second moment, provided their frequencies 
exceed the rigid-lattice line width (Abragam, 1961). 
These effects are expressed by averaging the spatial 
factor of the dipolar interaction term, (1 - 3  cos z O)/r 3, 
over all displacements caused by such motions. This 
permits an investigation of motions in solids by 
n.m.r spectroscopy, and, indeed, various types of 
motions such as reorientation of a methyl group about 
its C3 axis (Gutowsky & Pake, 1950), rotation of 
benzene about its sixfold axis (Andrew & Eades, 1953) 
and isotropic 'tumbling' of a molecule (e.g. Smith, 
1962), have been characterized by their effect on the 
second mgment. 

In this paper, we wish to concentrate on the com- 
monly occurring restricted motions in crystals - the 
lattice vibrations, or more accurately, their average 
effect on the second moment. The frequencies of these 
motions exceed by about seven orders of magnitude 
the rigid-lattice line width, which warrants their effect 
on the second moment. Furthermore, lattice vibrations 
hardly affect the spin-lattice relaxation times, because 
their frequencies greatly exceed the Larmor resonance 
frequency of the spins, and hence their effects on line- 
shape parameters are left to be considered. Early 
attempts to treat such effects were confined to simple 
systems and applications were restricted to crystals 
such as hydrates (Pedersen, 1964), ammonium salts 
(Gutowsky, Pake & Bersohn, 1954; Ibers & Stevenson, 
1958) and other simple examples. No attempt was made 
in these studies to account for the effect of motion on 
interactions between nuclei which belong to different 
molecules. 

A general solution of this problem must clearly be a 
rather complicated one, since (AH 2) is affected by the 
change of orientations as well as separations of all 
the nuclear pairs in the crystal. Since the same types of 
motion also affect the intensities of diffracted radiation 
and their effect on the latter can be conveniently 

expressed by atomic and molecular vibration tensors, 
it occurred to us, some time ago, that an attempt to 
derive what might be called a 'temperature factor' of 
(AHZ), in terms of the crystallographic average- 
motion formalism, should be worthwhile. We have 
followed the conventional subdivision of the second 
moment into its intramolecular and intermolecular 
parts and restricted the validity of our derivations to 
crystals composed of rigid molecules. We found that 
the motional correction of the intramolecular part 
could be expressed using the molecular libration tensor 
only (Shmueli et al., 1973) while the effect of motion 
on the intermolecular contribution to the second 
moment was expressed in terms of molecular libration 
tensors, atomic anisotropic vibration tensors and inter- 
atomic correlated-displacement tensors (Polak, Shein- 
blatt & Shmueli, 1974). Thus, assuming independent 
vibration of rigid molecules, it was possible to evaluate 
the effect of lattice vibrations on the second moment, 
and compare the result with experiment. 

We intend, in the present paper, to rederive the 
equations obtained so far and to examine their 
modifications which may be appropriate for dealing 
with the more general case of non-rigid molecules 
composed of rigid segments. A preliminary consi- 
deration of this problem has been reported elsewhere 
(Polak, Shmueli & Sheinblatt, 1974). 

Second moment and molecular vibrations 

We shall consider the general case of two nuclei 
belonging to different (coupled) rigid groups of atoms 
in a crystal. Since a displacement of either group is 
likely to change the orientation and, in general, also 
the length of the internuclear vector rtj, we must 
average the dipolar interaction term over all possible 
types of motion, including the coupled motion of the 
two groups in question. We assume that the average 
motion of each of these groups is described in terms 
of rigid-body tensors and that for each of the nuclei the 
anisotropic vibration tensor is also given. Approxi- 
mations regarding the usually unknown parameters of 
coupled motion will be made in the applications of the 
general result, to be derived, to several important 
special cases. The motion is assumed to be harmonic 
and thus only quadratic average displacements will be 
retained. 

The geometry of the problem is specified as follows. 
Nuclei i and j, belonging to rigid groups A and B 
respectively, undergo instantaneous displacements u A 
and u~ from their equilibrium positions r~ and r~. The 
instantaneous internuclear vector is given by 

rij ---- (rf + uA) -- (r~ + U~)--  r l j  + d 

where rij is the equilibrium internuclear vector and d 
is a small relative displacement. The external magnetic 
field vector IZI0, taken here as a unit vector, forms 
angles 0 and 0' with rij and r~j respectively. All vectors 
and tensors are assumed to be referred to a Cartesian 

A C 32A - 2 
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coordinate system. A schematic representation of this 
situation is given in Fig. 1. 

The quantity to be evaluated is 

( D i j ( r ~ j ) ) = ( . 1 - 3 c o s 2 O i j . ) = (  1 3(HkX~)2) 
C fly 

(2) 

where Hk and X;, are components of fl0 and rij 
respectively, and the brackets denote averaging over 
all nuclear displacements from equilibrium. This can 
be accomplished by expanding D~ in a Taylor series 
about the equilibrium internuclear vector r~ 

Dij(rij)= D,j(r,j + d) 

OD~j(r~j) 82D~j(riJ) dkdt + (3) = Dij(r~j) + ~3Xk dR + ½ OXkOXl "'" 

where Xk and dk are components of r~j and d respec- 
tively. Only the first three terms of the series are taken, 
since the displacements are assumed to be small 
(harmonic approximation). The required result is then 
obtained by evaluating the averages (d) and (ddr).  

The first average, (d), is the difference between the 
average displacements of nuclei i and j. As shown by 
Schomaker & Trueblood (1968), the average small 
displacement of an atom is given by 

(u)  = ½ [ L -  Tr(L)I]~ + @)  x ~ + ( t )  (4) 

where ~, and t are instantaneous angular and trans- 
lational displacements of the rigid grou p to which the 
atom belongs, L is the libration tensor of the group, I 
is a unit matrix and ~ is the atomic position vector, 
referred to the centre of libration of the rigid group 
(see Fig. 1). Assuming that average linear displace- 
ments vanish (Schomaker & Trueblood, 1968; 
Scheringer, 1972), we obtain 

1 - 3 c o s  2 0 ~ j \ _  1 - 3 c o s  209 
'3 ?'3 / i ' i j  

3 
+ ,-si- [(5 cos 2 0~j-  1)U(d)-21Clor(d) cos O,j] 

rtj  

3 
+ -2-~-[(.5 cos 20~j-  1) Tr (V) 

+ 5(1 - 7 cos z O~j)frW 

+ 20I:i~'VO cos O,j- 2IZl0Vfl0] (7) 

where ~ = r~Jlrijl. 
The effect of motion on the correction terms is thus 

described in terms of libration of the rigid groups A 
and B, the anisotropic vibration tensors of nuclei i and 
j and the coupling tensors of these nuclei. Specifically, 
the term [ L - T r  (L)I] appearing in (d)  corresponds to 
the apparent foreshortening of the vector, Tr (V) is the 
sum of mean-squared relative displacements along the 
coordinate axes, UV~ and l:I0rVl--t0 are mean-squared 
relative displacements along ~ and I:I0 respectively 
(Scheringer, 1972). The remaining term, I:i~V~= 
((fiord) (drY)), is the mean product of relative dis- 
placement projections on the vectors lq0 and 2. Hence, 
the motional correction depends on the directions of 
the internuclear vector and the external magnetic- 
field vector as well as on their relative orientation. 

The largest contributions to the second moment are 
due to close-lying nuclei, because of the r-6 dependence, 
and it is therefore convenient to treat separately inter- 

( d ) = ½ { [ L a - T r  (LA)I ]~- [LB--Tr  (LB)I]~y}. (5) 

The components of the position vectors ~A and ~y are, 
of course, assumed to be corrected for libration. 

The second average, (ddr),  hereafter defined by V, 
is given by 

u, 
i . ,  ro  

(ddT> = ((u:- u~) (u/a- u~)r) 
B B T  A B T  = <u:(u::)+ <uj(uj) )-(u, (uj) >- 

- - | I A _ I _ I T B  ITAB__(IT .AB.~T 

--.V. (6) 

The first two averages in the right-hand side of (6) are 
the anisotropic vibration tensors of nuclei i and j, 
while the other two describe the average correlated 
motion of these nuclei [cf. equation (3-2) of Scheringer, 
(1972)]. 

Carrying out the differentiation indicated in (3) and 
substituting the averages from (5) and (6), we obtain 

: 14 ~l ,,,j 

Fig. 1. Geometry of the problem (schematic). All vectors and 
angles appearing in the figure are defined in the text. The 
points O, C A and C B denote the origin of the Cartesian 
working system and the centres of libration (Pawley, 1968) 
of the rigid groups A and B respectively. 
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molecular and intramolecular pairs of nuclei. We shall 
also consider the case of two nuclei belonging to rigid 
parts of the same non-rigid molecule. These three cases 
differ only in the extent of correlated motion and hence 
in the form of the tensor V given by (6). We shall now 
express V in terms of the displacements of groups A 
and B and turn later to the evaluation of the above 
mentioned special cases. 

Since an atomic instantaneous displacement can be 
written as 

u ~ , x e + t = R L + t ,  

where the matrix B is given by 

- -  Q2 
B =  - 0 3  0 1 

02 - QI 

we can express the coupling tensor U ~  [equation (6)] 
as  

U ii"~B---- ((BiA~,A + t A) (BjB~ B + t B ) r )  

= B ' A L a n ( B J B )  r +BiASAB+(BJBSnA)r w T  An (8)  

where LA/~=(~,A(~,B)T), San=@A(C))  and T A B =  

(ta(C) r )  are tensors describing the coupled motion of 
the rigid groups A and B. 

We also use the conventional representation of 
atomic vibration tensors, e.g., 

Uf = B'ALA(BiA) r + B'AS A + (B'ASa) r + T a . (9) 

Equation (9) is the same as that given by Pawley (1968) 
except for the sign of the matrix B, due to which the 
products BS and (BS) r are now added rather than 
subtracted. Using (8) and (9), we can rewrite (6) as 

V = VL + Vs + VT (I0) 
where 

VL= B'ALA(B'A) r + BJBLB(BJB) T 

--BtALAB(BJn)T--BJBLBa(BtA) r (1 1) 

Vs = B'a(S a - S an)  + BJB(S B -  S eA ) - [ B ' a ( S  A - SAB)] r 

--[BJB(SB--SBA)] T (12)  

and 
V T : T a + T ~ - T A8 - T BA . (13) 

(| IAB'~ T The condition U ~ = v , ~ j j  [cf. (6) and Scheringer 
(1972)] has not been used, since it would make (12) 
less obvious for the present purpose. Equations (10)- 
(13) represent the tensor V in terms of second-order 
tensors describing the independent and coupled 
motions of the rigid groups A and B to which the 
nuclei i and j respectively belong. 

The intramolecular contribution 

Suppose that nuclei i and j belong to the same rigid 
group of atoms. This amounts to saying, in terms of 
the above, that the rigid groups A and B are now parts 
of the same rigid body. Since, in this case, ~a=~,a_~,  
and tA=tB--t  all the tensors in equations (11), (12) 

and (13) reduce to the rigid-body tensors L, S and T 
respectively, of the group containing both nuclei. It is 
seen that Vs and VT vanish identically and V L becomes 

V L = ( B i A - B J B ) L ( B ~ A - B J B )  r . (14) 

Equation (14), derived here by standard methods of 
rigid-body motion analysis, was also deduced by 
Scheringer (1972) via comparison of lattice-dynamical 
representations of atomic vibration tensors and inter- 
atomic coupling tensors. 

Since the internuclear vector is now given by r t j=  
A B ~i - e  j,  we can write 

where 
V L = r ~  QLQ r 

Q = - r a  0 
r2 m r l  

(15) 

rk being the Cartesian components of the unit vector ~. 
Substituting VL from (15) for V into (7), we see that 

the second and fourth terms cancel each other while 
the fifth and sixth terms vanish identically. This 
happens because, as can be shown using standard 
tensor algebra, 

and 

"~ ^T Tr (VL) = r ~v r [Tr ( L ) I -  L]~ 

IOITV Lf = r Z~ j I ~  QLQT~ = O 

because QTO=~ x ~=0. 
The quadratic form ~rVL~ vanishes for the same 

reason. 
Equation (7) thus becomes 

~ 1 - 3 c o s / O ;  A _ 1 {1- 3[cos2 O,j(1- Tr (L)) ~ 3 rlj / intra r?j 

+ ITt0Lf cos O,j + (leIorQ)L(lq0rQ)r]}. (16) 

The same result was obtained by Shmueli et al. 
(1973) by a direct averaging of cos 2 0, which is clearly 
the only quantity affected by motion in the present 
case. Equation (16) can be conveniently employed in 
the evaluation of the intramolecular contribution to 
the second moment of a single crystal (Shmueli et al., 
1973). 

In the case of isotropic libration, the right-hand side 
of (16) reduces to 

( 1 - 3  c°s2 0iJ  ~ intra 

rl') i isotropic 

1 
- r ? j  { 1 - 3 c o s  2 0[1 - T r  (L)]  - T r  ( L ) }  (17 )  

with Tr (L)=3L0, where L0 is the (scalar) isotropic 
mean-squared libration amplitude (Shmueli et al., 
1973). Equation (17) can be shown to be equivalent to 
the result obtained by Pedersen (1964) for the case of 
isotropic librations of a water molecule in hydrates. 

A C 32A - 2* 
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The intermolecular contribution 
We now turn to reconsider the case of nuclei i and j 

belonging to different molecules A and B respectively 
(Polak, Sheinblatt & Shmueli 1974). A glance at equa- 
tions (6) and (I0) through (13) shows that, in principle, 
the vibration tensors as well as the coupling tensors ought 
to be known in order to evaluate V. Unfortunately, the 
coupling tensors are not available experimentally nor 
can they be calculated without recourse to lattice 
dynamics in the harmonic approximation (Scheringer, 
1972). However, when a large number of such inter- 
molecular contributions to the second moment are 
summed, it is not unreasonable to assume that the 
contribution of average intermolecular coupling is very 
small and to neglect it as a first approximation (the 
Einstein model of a crystal). Under such an assump- 
tion, the last two tensors on the right-hand side of (6) 
vanish and equation (7) with V given by 

V__U#+U~ (18) 

can be used for the calculation of the intermolecular 
contribution of nuclei i and j to the second moment. It 
is of interest to recall that the second correction term 
on the right-hand side of equation (7) vanishes in the 
case of isotropic and uncorrelated vibration of the 
nuclei (Polak, Sheinblatt & Shmueli, 1974). This result 
suggests that the effect of motion on the second 
moment of ionic cubic crystals, in which the nuclei are 
located at certain special positions, should be very 
small. For such crystals, the first correction term also 
vanishes because the ions are located on their centres 
of libration. Hence only terms of order higher than 
the second might be of some small possible signifi- 
cance. This is in apparent agreement with Engelsberg 
& Lowe's (1974) derivations of motional correction 
to the second moment of the calcium fluoride crystal. 

The intersegment contribution 

Let us now suppose that the nuclei i and j belong 
to two rigid parts of the same molecule and that these 
parts are connected by bonds about which they can 
librate. There are a large number of examples which 
correspond to this situation, such as organic molecules 
with bulky phenyl substituents, and hence this case is 
of a considerable importance. Formally, the whole V 
tensor should again be evaluated in order to find the 
required contribution. However, whereas in the case 
of the intermolecular contribution the neglect of 
coupled motion is equivalent to the assumption of the 
often successful Einstein model, such a neglect in the 
case of, say, two bonded benzene rings would certainly be 
wrong. The most important part of the coupled motion, 
in this case, is probably the translation of the molecule 
as a whole and it appears reasonable to assume that 
the instantaneous translations of the segments A and B 
are always identical. This is, of course, an approxi- 
mation because internal stretching and bending vi- 
brations are neglected. We shall also assume that the 
librations of the two segments are uncorrelated. 

Considering equations (11), (12) and (13), we see 
that in view of the above assumptions Vr vanishes and 
the same happens to Vs since SA=S An for t '~=t D etc. 
Thus, the V tensor reduces to 

V =  B'ALa(B'A) r + BJSLB(BJB) r . (19) 

An alternative approach, which also assumes un- 
correlated librations of segments A and B, can be 
proposed. Assuming, as above, that the translations 
of the segments are identical, it follows that T a +  TB= 
T AB + T BA = 2T'. If we further neglect the coupling 
'screw' tensors S '~B and S Ba, V can be written as* 

V % Ui 4 + U y -  2T ' ,  (20) 

where T' is the mean translation tensor of segments 
A and B. This may have the advantage that internal 
vibrations are taken into account via the observed 
anisotropic vibration tensors Ui 4 and U~. It is, however, 
difficult to say which of the two approximations is the 
better one. A complete calculation of the motion- 
affected second moment for a flexible molecule con- 
sisting of rigid segments can thus be outlined. The 
intrasegment contributions are evaluated from equation 
(16), the intersegment contributions are found using 
equation (7) with V defined by (19) or (20) and the 
intermolecular contributions follow from equation 
(7) with V given by (18). The individual contributions 
are squared and summed as indicated by equation (1). 
The above method of calculation is applicable to 
second moments of single-crystal spectra. 

Second moment o f  a polycrystalline substance 

In order to obtain the second moment of a powder 
sample we have, in principle, to calculate the second 
moment of each individual crystallite and sum all these 
contributions. The resulting procedure for the deriva- 
tion of the relevant expression is therefore to average 
the corrected-for-motion and squared dipolar inter- 
action term over all orientations of the internuclear 
vector or, what amounts to the same, of the external 
magnetic field. In what follows we present the results 
for the intramolecular (Shmueli et al., 1973) 
and intermolecular (Polak, Sheinblatt & Shumeli, 
1974) contributions, for the derivation of which 
equations (16) and (7) respectively were employed. 
Prior to the orientational averaging, terms containing 
atomic or molecular displacements of order higher 
than the second have been deleted. The integrations 
were performed by referring fl0 to spherical coordinates 
and making use of Cartesian tensor algebra. Examples 
of such integrations are given in the Appendix to the 
article by Polak, Sheinblatt & Shmueli (1974). 

The quantity averaged is 

M, j=  ( ( 1  --3 c°s2 0l~ 2 

* The translation tensors of two segments of the same 
molecule usually turn out to be somewhat different (e.g. 
Rietveld, Maslen & Clews, 1970). 
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and the results are 

4 1 
6 {1 - 3[Tr (L)-~rLf]} (22) M~s- 5 r is 

for the intramolecular contribution and 

M,j 4 1 ( 6C 6D) 
- -  6 1 -  - -  + -  (23) 

5 r ~s r i j  ra~j 

where c = ~ r ( d )  and D=3~rV~-Tr  (V), for the inter- 
molecular contribution. 

It can be readily shown that (23) reduces to (22) if the 
tensor V, given by equation (15), is substituted into 
(23). Although equation (23) is, in fact, applicable to all 
three cases outlined above, it is convenient to treat 
the significant intramolecular contribution separately. 

The expression for the second moment of a poly- 
crystalline substance thus becomes 

, , j  r{; -- 5--  (,> ~j r{j t . a  

i n t e r  C i n t e r  D'l  
+ 2 ~ ~ 2 ~ ] (24) 

. . . .  78- ....... , 
i > j  I j  i > j  r i j  

where K={I(I+I)y2h2/N, as in (1), and G = T r ( L ) -  
~rL~. The first term is also obtained by an orientational 
averaging of equation (I) and thus refers to the case of 
nuclei at rest. It is known, and is always referreJ to, 
as the second moment of the rigid lattice. 

Molecular motion usually leads to a reduction of the 
second moment from its rigid-lattice value. It is often 
convenient to be able to estimate this reduction and 
for this purpose the reduction factor defined as 

~= (AH2)/(AH2)rIgid (25) 

(Gutowsky & Pake, 1950) is usually calculated. For 
example, the reduction factor for the intramolecular 
contribution of a single crystal [see (17)] as well as of 
a polycrystalline substance, [see (22)], under the as- 
sumption of isotropic libration, is given by 

0= 1 - 2  Tr (L)= 1-6L0.  (26) 

This is a crude but rapid way of estimating the mag- 
nitude of the effect of motion on the intramolecular 
contribution to the second moment. 

Discussion 

Within some limitations, to be discussed below, the 
above method constitutes a link between the mani- 
festations of lattice vibrations in two different pheno- 
mena: diffraction by crystals and their nuclear magne- 
tic resonance. Thus, a direct application of the above 
expressions would be a confrontation of experimental 
second-moment data with theoretical values of the 
vibration-affected second moment, calculated using 
crystallographic positional and thermal parameters. 
Several such examples, concerning powder specimens, 
have been reported elsewhere (Polak, Sheinblatt & 
Shmueli, 1974). Undoubtedly, experiments with single- 

crystal specimens are called for, if an extraction of 
meaningful information about motion, from second- 
moment measurements, is to be attempted. 

Assuming that the crystallographic thermal param- 
eters are sufficiently accurate for the purpose of these 
calculations, we are still faced with a difficulty - the 
necessity of neglecting correlated motion. For a given 
crystal, a comparison with reliable second-moment 
experimental results is likely to indicate whether such 
an approximation (in fact, the assumption of an Ein- 
stein model of a crystal) is a valid one. In the case of 
segmented molecules, one may assume the model of 
'riding' motion (Busing & Levy, 1964; Johnson, 1970) 
and represent thereby some degree of correlated 
motion of neighbouring segments. The composite vi- 
bration tensor V [equation (6)] reduces, in the case of 
the riding-motion model, to a simple expression, viz. 

_ _  A Vrid ing-Ut-U]  (cf. Scheringer, 1972), calculable 
from available anisotropic vibration tensors. Thus, 
rough estimates of the effect of correlated motion can 
sometimes be obtained. It should be pointed out that 
the missing coupling tensors [equation (6)] can be 
calculated in the harmonic approximation, using 
semiempirical potential functions (Scheringer, 1972; 
Pawley, 1972), by well defined, yet rather cumbersome 
procedures. It is possible that advances in the appli- 
cation of lattice dynamics may contribute to the 
solution of this problem in the present context as well 
as in others. 

Another possible source of discrepancy is the fact 
that the second moment is not affected by motions with 
frequencies smaller than the rigid-lattice line width 
(about 103-104 c.p.s, for typical hydrogen spectra). 
Actually, the density of states for such low-frequency 
vibration modes is usually very small (Kittel, 1971) and 
this does not appear to be a serious limitation, espe- 
cially where librational motion is concerned. 

An important practical aspect is the availability of 
anisotropic vibration tensors of hydrogen atoms. They 
are usually available from neutron diffraction studies 
but only very rarely from X-ray work. Neutron data 
are therefore definitely preferable, but in the case of 
X-ray results, the anisotropic vibration tensors of 
hydrogens can be approximately calculated from the 
rigid-body tensors of the heavy-atom skeleton. 

Second-moment calculations for anthracene (Shmueli 
et al., 1973) trans, trans-muconodinitrile (Polak, Shein- 
blatt & Shmueli, 1974) and p-terphenyl (Polak, Shein- 
blatt & Shmueli, 1975) indicate that, at least at present, 
the applicability of the method is restricted to large 
libration amplitudes (translational motion is less 
important, mainly because it does not affect the intra- 
molecular motional correction). Thus, the calculated 
reduction factors of the second moments of poly- 
crystalline anthracene, trans, trans-muconodinitrile and 
p-terphenyl are 98.1, 88 and 81% respectively. Calcu- 
lated reduction factors for the last two substances, in a 
single-crystal state, are significantly smaller for some 
orientation ranges of the crystal with respect to the ex- 
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ternal magnetic field (Polak, Sheinblatt & Shumeli, 
1974, 1975). A typical error in second-moment deter- 
minations using computerized conventional experimen- 
tal setups is 3 to 5%, which obviously limits the 
detectability of the effect to cases of large libration. 
However, very accurate techniques of second-moment 
measurements are being developed and the accuracies 
claimed are of the order of 1% (Engelsberg & Lowe, 
1974). It follows that conventional second-moment 
measurements may provide, with the present method, 
useful indications about the genuineness of large li- 
brational motions indicated by diffraction methods. 
More sophisticated experimental approaches may lead 
to an independent application of the second moment to 
the study of average vibrational motion of nuclei, of 
spin I =  ½, in crystals. 

Programming considerations 

The equations summarized above have been applied 
(Shmueli et al., 1973; Polak, Sheinblatt & Shmueli, 
1974) to several examples with the aid of computer 
programs written in Fortran. Prior to the calculation, 
a rigid-body-motion analysis is required, which 
provides, apart from the rigid-body tensors of the 
group(s) considered, transformation matrices for co- 
ordinates and vibration tensors from the crystal 
system to the system to which the libration tensor is 
referred. These transformations are also applied to the 
space-group operations, so that standard structural 
data may be used as input, and the whole calculation 
is conveniently referred to a working Cartesian system. 
Some care must be exercised in evaluating the first 
correction term in equation (7) because the atomic 
position vectors ~ say, are there referred to the 
effective centre of libration of group ,4 (Pawley, 1968). 
If this group happens to be related to the reference 
molecule by a space-group operation, only the rotatio- 
nal part of this operation needs to be employed in 
order to generate the vector ~ .  

The lattice sum in (1) was in some cases evaluated 
out to r = 8 A, although mostly smaller cut-off distances 
appear to be sufficient. 

In second-moment calculations for single-crystal 
specimens, the magnetic-field vector must also be 
specified and transformed to the working system. 
Since the goniometer axis is usually perpendicular to 
the magnetic field lines, a theoretical curve for compa- 
rison with the experiment is easily obtained by taking 

1~0 as normal to the lattice vector about which the 
crystal is being rotated, and by rotating lel0 about this 
direction in preset steps throughout the required range. 
Examples of such curves are presented elsewhere 
(Polak, Sheinblatt & Shmueli, 1974). 
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